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Abstract 

 

  The purpose of this research was to evaluate the appropriateness of using non-

parametric estimators, specifically the Chao1, ACES, and Jackknife methods, for 

estimation of the number of unique species comprising a population.  It goes on to 

develop a parametric method for the above stated problem.  This research consisted of 

creating diverse populations, with known numbers of species, and applying the 

aforementioned non-parametric and parametric methods to samples drawn from the 

constructed populations.  The parametric fitting of several different distributions to the 

sample data, including the lognormal, gamma, and Weibull was considered.  Both types 

of methodologies were then applied to sample data from constructed wetlands, where 

little is known about the overall population size and species composition (number of 

unique species in the population).  This research attempted to identify the underlying 

population distribution of the wetlands (via fitting of parametric curves to the sample), as 

well as focused upon demonstrating that the use of parametric methods were more apt to 

provide better results in estimating the number of species in a natural population.         

  This research discovered the use of the non-parametric methods, developed 

originally for the use of smaller well-defined populations (Chao1) or computer debugging 

(ACES) was not appropriate for species estimation.  The use of these methods resulted in 

lower bounds, which were several standard deviations away from the true number of 

species, for the contrived populations.  This research found applying a parametric method 

was more accurate in representing the truth.  A comparison of the two different 

approaches to species estimation and the advantages of using a parametric method over a 

non-parametric method are discussed as well.   
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PARAMETRIC ESTIMATION OF NUMBER OF SPECIES COMPRISING A 

POPULATION 

I.  Introduction 

Background 

The current state of the environment continues to become an increasing area of 

focus and concern, as researchers look for ways to negate the detrimental impact humans 

have had on the environment.  At the forefront of efforts to improve its state are the 

techniques which are currently used to remediate the environment.  Although there are 

different methods available, many are too costly to be useful for widespread application.  

Bioremediation is a natural method which holds much promise in its ability to efficiently, 

effectively decontaminate polluted areas. 

This particular method relies upon microbes found within the soil to decompose 

carcinogenic and pollutant materials.  Consequently, the composition of the microbial 

population in soil is receiving a great deal of attention.  The theory behind this is that if 

the species of microbes known to be effective as remediation agents can be determined, 

then perhaps these specific species can be introduced into heavily polluted areas and 

successfully begin and/or complete a remediation process.  In order to know what species 

play an important role in remediation, scientists first must learn the number of species 

that comprise a population.  This biological categorization may lead to a functional 

categorization, which will allow biologists to determine the importance of specific 

species in certain roles.  However, this seemingly simple task of determining the 

composition and number of species is, in fact, a momentous problem.   
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The composition of the underlying population of the microbes is, to date, 

unknown, as are the exact number of species which reside in the soil.  Methods for the 

estimation of the number of species which are currently used include both parametric and 

non-parametric estimation techniques.  There are advantages and disadvantages to the use 

of parametric versus non-parametric techniques.  Some believe that non-parametric 

estimators will afford the most accurate estimations.  Others believe that the parametric 

estimators will lend themselves better to estimation.   

 

Problem Statement 

 The estimation of species diversity is a matter of interest in the bioremediation 

process.  The goal of this research is to discern the most appropriate method of estimating 

the number of species found in a particular population.  This research makes use of data 

collected from constructed wetlands as an example of practical application of the most 

appropriate method. 

 

Research Objectives 

 There are a plethora of methods used to estimate the diversity of microbial 

populations in the soil.  This thesis aims to derive a best estimator for the use of 

examining the aforementioned problem. 

 Before the process of derivation can begin, it is necessary to understand and 

review the parametric and non-parametric methods which are commonly used for 

population estimation.  This thesis aims to review the advantages and disadvantages of 
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the most commonly used estimators.  It then continues by seeking the derivation or 

modification of a best estimator. 

 

Research Question 

 Currently, non-parametric estimators are touted as best for estimating the number 

of species in a microbial population.  The overarching question, for the purpose of this 

study is:  Are the non-parametric methods currently used for species estimation, in fact, 

appropriate for use on estimating the number of species comprising a natural microbial 

population, or does a better alternative exist? 

 This thesis begins first by answering the question of the correctness in applying 

the commonly used non-parametric methods in this situation.  This thesis then continues 

on to suggest a more appropriate alternative for wetlands soil species estimation. 

 

Thesis Organization 

 Chapter 2 begins by examining the breadth of research currently available 

regarding microbial population species estimation.  There are varying viewpoints as to 

applying a non-parametric versus parametric method to the problem at hand.  This 

chapter attempts to examine the differing opinions and offer the positive and negative 

aspects of both arguments.   

 Chapter 3 contains the methodology used in this thesis.  The undeniable fact that 

so many unknowns surround this problem makes it difficult to assess the truth.  This 

portion of the thesis delves into the creation of several populations, which when sampled 

produced (in some cases) samples similar to the real-world data collected from the 
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constructed wetlands.  Also included were populations from which samples were 

comprised of mostly unique species.  Particular emphasis was placed upon creating 

populations in which many of the sampled individuals were seen as unique. 

 Chapter 4 delves into the analysis and results produced by the methodology used 

in this thesis.   This chapter will focus upon reviewing the results of using each method 

on several different populations.  Comparison charts will be included to further 

demonstrate the results from the different methodologies. 

 Chapter 5 introduces the conclusions and recommendations of this thesis.  These 

conclusions will be based upon both the application of a parametric method to the 

fabricated populations as well as to the real-world constructed wetlands data.  

Suggestions for future research are also included in this chapter.   

 



 

II Literature Review 

Chapter Overview 

The purpose of this chapter is to review relevant research in the area of 

composition biodiversity estimation.  According to the Stanford Encyclopedia of 

Philosophy, compositional biodiversity is the ability to separate organisms into categories 

based upon structural composition (as opposed to a classification based upon an 

organism’s functionality).  This categorization can itself be studied from different 

aspects.  Biodiversity can be examined in terms of the number of different species present 

in the community, often referred to as a community’s richness.  Alternatively, 

biodiversity can also be viewed in terms of coverage.  A measure of coverage is 

evenness, which describes how many of each species is present in the community.  

Biodiversity can be viewed as a combination of both richness and evenness, a method 

which, perhaps, provides the most information about the community.  

There are a plethora of algorithms available for estimating the different aspects of 

biodiversity.  Some estimators, such as the Chao1 method, strictly focus on richness data.  

Methods such as these will focus on the number of times each species is found in the total 

sampling effort.  For example, the Chao1 estimator considers the number of species that 

are only seen one or two times; all other information is not accounted for in the 

calculation (Chao; 1987). Other estimators, such as Simpson’s index, pull both richness 

and evenness information from the sample.  The calculation of Simpson’s index takes 

into account the number of individuals of each species in the sample as well as the 

number of species which appear in the sample (Offwell Woodland and Wildlife Trust; 

2007).   
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Furthermore, these existing methods may also be partitioned depending on 

assumptions made regarding the underlying population.  The estimators may be 

parametric, non-parametric, or a combination of the two.   Each of these classes has 

advantages and disadvantages associated with their use in estimating diversity of 

microbial population.     

 

Description  

Many of the currently used diversity estimation methods were first developed to 

describe populations of macro-organisms (for example species of birds, foxes, etc.).  

Populations of macro-organisms, though they may be comprised of hundreds of different 

species, are generally orders of magnitude smaller than the number of species associated 

with microbial populations.   

This difference in magnitude is evidenced by examining accumulation curves (of 

various types of organisms) which are used to visually express the relationship between 

the sampling effort and the number of species found throughout that effort (Hughes et al.; 

2001).  Populations which are comprised of many of the same species (such as birds or 

foxes) will reach an asymptote quickly, whereas populations comprised mostly of 

singletons (the only member of the species) will appear to be more linear (Hughes et al.; 

2001).  Figure 1 provides an example of two accumulation curves.  The line represented 

by the filled-in circles is an example of an asymptotic accumulation curve; the line 

represented by the open circles is an example of a non-asymptotic accumulation curve 

(Dove and Cribb; 2006:569). 
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Figure 1.  Examples of Asymptotic and Non-Asymptotic  

Accumulation Curves (Dove and Cribb; 2006:569) 

 

The theory behind the use of accumulation curves is, given that a community has 

a finite number of species, and, given that the population is able to be sampled 

abundantly (a key assumption), eventually all the species will be seen by the researchers 

and the curve will reach an asymptote.  Consequently, populations consisting of fewer 

species will require less time and effort in terms of sampling (smaller sample sizes will 

predict the diversity of the sampled community).  However, a population comprised of 

many different species, such as some insects or microbes, will require a greater sampling 

effort, and the accumulation curve will be appear to be linear if the sample is not large 

enough to infer the number of species in the population.    

Although accumulation curves may be practical for macro-organisms, since 

microbial populations (in many instances) are too diverse to count in this way, 
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accumulation curves are not ideal and will not give much information regarding the 

population, as stated above, the curve will appear to be linear (Hughes et al.; 2001).  It is 

therefore necessary to use a diversity estimator to make inferences about the population 

composition.  

The same algorithms which have been developed for (more or less) well-defined 

populations have been directly applied to microbial populations where there is a great 

amount of uncertainty surrounding the number of species in a particular population.  One 

of the fundamental problems with this type of direct application is that, for at least a few 

of the diversity indices (for example, the Shannon and Simpson indices) the total number 

of species needs to be known (Chao and Shen; 2003; Collins et al.; 1995).  To date, 

however, the number of microbial species residing in the soil is unknown (or there would 

be no need for diversity estimators).  This issue is further complicated by the length of 

time required to sample and identify microbial species.  For example, when using certain 

diversity measures, such as the Chao1 estimator, the estimate will be correlated with the 

sample size until the square root of two times the entire richness is reached 

( 2*richness ) (Hughes et al.; 2001: 4401).  With current estimates of bacteria soil 

population ranging from 3,000,000 to 5,000,000,000 per gram of soil the effort involved 

in achieving a sample which will accurately reflect the population quickly grows 

(American Society of Agronomy; 1977).  Realistically, with the limited resources 

available, it becomes nearly impossible, for an extremely large and diverse population `to 

collect a sample size that will result in an uncorrelated sample.   

Therefore, an estimator which can accurately predict the number of microbial 

species with the available sample (which in most cases may not be a sample of sufficient 
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size to produce an uncorrelated estimate using non-parametric methods) is crucial to 

answering many questions regarding microbial soil diversity. 

 

Relevant Research 

 Before comparing or discussing the different methods currently used for 

population estimation, it is first necessary to discuss the more commonly used estimators.  

The more commonly used methods include the use of extrapolation from an accumulation 

curve as well as the use of non-parametric and parametric estimation.  The non-

parametric estimators which will be discussed are the Chao1 method, the abundance 

coverage estimator (ACES), and the Jackknife method.  The parametric estimators which 

will be discussed will be based upon the population distributions which are thought to be 

those which most accurately describe biological populations.  These include the 

lognormal, broken stick, the geometric, and, most recently, the Pareto (Hong et al.; 2006: 

118).   

 Accumulation curves may themselves be used to estimate the number of unseen 

species composing a particular population; however, it is important to note the way in 

which samples are added to the curve (Colwell and Coddington; 1994).  The difficulty of 

the method of introducing samples to the curve may be quickly overcome by ensuring 

randomization of the sample order (Colwell and Coddington; 1994).  The curve may be 

computed either by rarefaction or a method described as a random placement curve 

(Colwell and Coddington; 1994).  Once the curve is created, based upon the assumption 

that the curve represents a uniformly sampled process, extrapolation may be completed 

by using either an asymptotic or a non-asymptotic approach (Colwell and Coddington; 
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1994).  Many different models to extrapolate from the curve exist which create an 

inherent problem with the use of this method for estimation.  This is because the 

application of different extrapolation methods may result in different answers for any 

given sample (Colwell and Coddington; 1994).  Additionally, different models may be 

more appropriate for different populations.  Although one model may be used to estimate 

a particular population, it may be inappropriate to apply the same model to a dissimilar 

population (Colwell and Coddington; 1994).  

 One of the most commonly used non-parametric methods is one developed by 

Anne Chao in 1987.  It is commonly referred to as the Chao1 method and is based upon 

the use of capture-recapture sampling, which is often used in studying macro-organisms.  

The capture-recapture method is a common method for studying the size of populations 

comprised of macro-organisms, such as birds or foxes.  Individuals from the population 

are captured, tagged, and released.   This process is repeated for a set number of days.  

Any tagged individual who is trapped again is considered to be recaptured (Chao; 1987).   

The Chao1 method is designed for situations in which there are many individuals 

which are seen only a small number of times (one or two) (Chao; 1987).  To use in 

populations of microbes, a microbe is recovered from a sample and is identified (by 

species name or otherwise identified if it is a previously unknown species) and placed in 

a “bin.”  This is equivalent to capturing a species.  Each subsequent microbe is identified.  

Microbes that are identified as belonging to the same species (for the purpose of this 

paper microbes with 97 percent genetic similarity of the 16s ribosomal ribonucleic acid 

(16s RNA), which is a piece of an organism’s RNA which uniquely defines it as a 

species, are considered to belong to the same species) are placed in the same bin.  This is 
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considered to be equivalent to re-capturing.  If they do not match a new bin is created and 

a new species is captured (Chao; 1987). 

 The theory behind the process follows.  Each bin is assigned a probability from 

some probability distribution F which allows for unequal probability of capture (as 

opposed to the uniform distribution which would require equal probability of capture for 

each bin).  There will be a certain number of distinct species captured in the experiment 

(denoted by S).  Additionally, fk represents the number of microbes captured k times in 

the samples.  It then follows that the entire number of unique species (N) will be equal to 

the number of distinct species found plus some number of species which are never 

observed in the sample.  It has been proven that the joint unconditional distribution of 

0 1( , ,..., )tf f f is multinomial (Burnham and Overton; 1978:628).  After the creation of a 

cumulative distribution function and some manipulation and substitution of variables the 

following equation for an estimator of N, the total number of species in a population: 

 

           ( )2
1

ˆ / 2N S f f= + 2                             (1) 

 

where S is the number of distinct species caught in the sample, f1 is the number of 

singleton species caught in the sample, and f2 is the number of species with exactly two 

members captured in the sample (Chao; 1989). 

The only information included in the estimator from the sample are the number of 

species which are identified either one or two times.  Species appearing more often than 

this are considered negligible.  However, if the information regarding the more abundant 

species is in fact non-negligible then this estimator is, at best, a lower bound of the 
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number of species found in the population (Chao; 1987).  This point seems to be often 

overlooked in studies and consequently it is often stated that the estimator often 

significantly underestimates the diversity of the community (Kemp and Aller; 2004).  

Another overlooked essential point is if the capture probabilities stem from a distribution 

which results in a relatively large average capture probability this method is not 

acceptable (Chao; 1987).   

The abundance-based coverage estimator (ACES) was derived by Anne Chao and 

Mark Yang.  It is another non-parametric estimator frequently applied to the problem of 

microbial biodiversity.  This method was originally intended for estimating software 

errors, for which a Poisson process is used to describe the rate of the occurrences of the 

ith error (Chao and Yang; 1993: 193).  Unlike the Chao1 method, this particular 

estimator takes into account species which are identified as rare as opposed to 

considering only the singleton and doubleton species.  Rare is defined as identifying the 

species 10 or fewer times within the sample (Chao and Yang; 1993).   

The sample coverage is a vital piece of information when using this estimator.  

Sample coverage addresses random samples from multinomial populations and is defined 

by Chao and Lee as “the sum of the probabilities of an observed class,” (Chao and Lee; 

1992: 210).  Other essential quantities needed for the calculation are the mean of the 

Poisson rates for all errors (species capture rate): 

 

                                i

N
λ

λ = ∑                                                      (2) 

and the coefficient of variation, denoted asγ , where: 
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( )2

/i Nλ λ
γ

λ

−
=
∑

                                      (3) 

 

(Chao and Yang; 1993: 194).  Additionally, the number of unknown errors (species) 

which have not been detected can be denoted as 0f N D= − , where D is defined as the 

number of distinct errors (species) which have been detected in the sample.  After 

combining and manipulating the equation the resultant estimator is: 

 

                                            21
1

ˆ ˆˆ ˆ
fDN

C C
γ= +                                                 (4) 

 

where , the estimator for sample coverage is: Ĉ

 

 1
ˆ 1 / iC f= − if∑                                                  (5) 

 

 and 1f is the number of errors (species) occurring only once (Chao and Yang; 1993).     

The Jackknife estimator is the final non-parametric method examined in this 

research.  The generalized Jackknife method was first applied to the problem of species 

estimation by Burnham and Overton.  Like the Chao1 and ACES methods, this method 

does not require an assumption of equal capture probabilities among species (Burnham 

and Overton; 1978:625).  This method is essential to the derivation of the Chao1 method 

in that the Chao1 method is a variation of the derivation of the jackknife estimator  
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(Chao; 1987:784).  This method takes the joint, unconditional distribution function of the 

species in a population and applies the generalized jackknife technique (Burnham and 

Overton; 1978:629).  The resulting generalized equation, whose k-th order form is given 

by: 

 

                                             
1

t

Jk ik
i

N a
=

= ∑ if                                         (6) 

 

and must be derived for each NJk as no simplified result of the equation exists (Burnham 

and Overton;1978:628).  According to research, this estimator reportedly underestimates 

the number of species if the population is comprised of many species which are identified 

only a few times (Chao; 1987:784).  The first and second order estimators are included in 

this research as a comparison with the Chao1 and ACES methods to assess how well, 

with the data presented in this thesis, each is able to estimate the number of species in an 

extremely diverse population. 

Another class of estimators exist which are also often used to describe microbial 

population composition.  These are the parametric estimators.  In order to use a 

parametric estimator, assumptions must be made about the underlying population 

distribution.  In the case of estimating the number of microbial species present in the soil, 

an assumption must be made regarding the distribution of all the species thought to be 

present in the soil.  In many cases regarding biological/ecological data, this is done by 

assuming the number of individuals versus the number of species takes on a continuous 

lognormal or Poisson lognormal distribution (Hughes et al; 2001:4401).  Once the 
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assumption regarding the total population has been made, the sample data is then fit to 

the same distribution.  This then allows for estimating the parameters of the curve and the 

total number of species can therefore be estimated (Hughes et al; 2001:4401).   

However, some of the assumptions made regarding use of the continuous 

lognormal model are troublesome.  For example, different groupings of abundance 

categories (since discrete data is used, rounding is necessary and the method used for 

rounding may result in the creation of different categories within the model) will yield 

different estimates (log base j will differ from log base k assuming j is not equal to k) 

(Colwell and Coddington; 1994:108).  Additionally, the placement of singletons within 

the groupings gives cause for concern and may ultimately bias the estimate of the mean 

(Colwell and Coddington; 1994:108). 

The Poisson distribution may fair better as it is a discrete distribution meant for 

data such as species identification which is discrete in form.  This model however, does 

not appear to be used as frequently as expected.  Colwell and Coddington suggest this 

may be due to the difficulty associated with fitting the model (Colwell and Coddington; 

1994:108).   

Some of the more common distributions thought to apply in this situation, in 

addition to the logarithmic and Poisson distributions are the geometric and broken stick 

models.  The geometric can be used to describe communities dominated by a few species 

with others being rare (this designation is based upon resource allocation, where 

resources are considered to be those items required for microbial survival) (Kemp and 

Aller; 2004:116).  The broken stick can be described as a community in which resources 

are allocated evenly throughout resulting in a fairly even community composition (Kemp 
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and Aller; 2004:116).  In more recent literature, the use of the gamma and inverse 

Gaussian have also been explored (Hong; 2006).   

Recently, another distribution has been regarded as having potential in this area.  

The Pareto distribution may be used to explain extreme populations.  In other words, it 

may be used to describe populations which are composed mostly of rare species or 

mostly of abundant species (Hong; 2006:118).  Although this model shows promise in its 

ability to estimate the number of species present in a population, it has not yet seen great 

use.  It has been suggested that this promising distribution be studied further in its 

applicability to this problem. 

A study comparing six different parametric methods found that the accuracy of 

the estimate depends upon how the species are identified (Hong; 2006:118).  For 

example, if organisms had to be only 80 percent genetically similar in order to be 

classified as the same species, the Inverse Gaussian distribution best described the 

population, whereas, if the organisms required 99 percent similarity, the lognormal model 

best described the data (Hong; 2006:119).  The conclusion reached in this study was that 

parametric methods may in fact be a more appropriate way to estimate the total number 

of species in a population. 

 

 

 

Summary 

 Though there are a multitude of ways to estimate the number of species 

comprising a particular population, they can be grouped into three general classes: 
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extrapolation from an accumulation curve, use of non-parametric estimators, and use of 

parametric estimators.  To date, the non-parametric methods have dominated the field, 

but recent research suggests that this may be inappropriate (Hong; 2006).  

 Non-parametric methods have the advantage of not making any assumptions 

regarding the underlying population which is being sampled.  A major drawback with the 

use of these algorithms is they appear to be correlated with the sample size and 

consequently appear to underestimate the total number of species which are present 

(Hong; 2006:119, Colwell and Coddington; 1994:111).   

The Chao1 estimator, one of the most frequently used methods, is intended to be a 

lower bound (Chao; 1994).  Additionally, if the estimator is used in its original form and 

there are no doubletons present the estimator is unusable (Chao; 2006).     

Non-parametric estimators as a group tend to give varying answers when applied 

to the same problem, with some appearing more correlated with sample size than others.  

Several studies applied multiple non-parametric methods which computed differing 

numbers for total species (Colwell; 1994, Kemp; 2004, Kemp and Aller; 2004, Hughes; 

2001, Chao; 1984).  

Parametric estimators are less likely to be used when estimating the number of 

species.  This may be because certain assumptions must be made regarding the 

underlying population distribution.  Nonetheless, a number of different distributions have 

been applied to this problem.  Although the more commonly used are the lognormal and 

the Poisson, it appears that other less known distributions may be better suited to explain 

microbial population distribution, such as the Pareto (Hong; 2006).   
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According to the biological literature, the sample size has a significant impact 

upon which estimator should be applied.  It is important to understand that the microbial 

communities seem to be comprised of enormous numbers of species.  As such, it is 

neither time efficient nor practical to sample exhaustively.  Thus the need for an 

estimator which is as accurate and unbiased as possible is essential.  

 



 

III.  Methodology 

 

Chapter Overview 

This chapter will discuss the methodology used to evaluate the commonly used 

non-parametric estimators as well as discuss the manner in which parametric methods 

were applied to the problem.  As previously discussed, the underlying question is the 

determination of the best method to use for estimating the number of species in a 

population (specifically in this case, a population of enormous size).    The first step was 

to create populations where the truth, regarding the number of species in the population, 

is known.  The next step was to evaluate the most commonly used non-parametric 

methods on the contrived data.  This was followed by the application of parametric curve 

fitting to the samples.  The latter two steps were applied to data collected from the 

constructed wetlands.  Figure 2 gives a pictorial representation of the aforementioned 

methodology. 

 
Data Set 

(Contrived or Natural) 

 

Non-Parametric Method 
Chao1  
ACES 

Jackknife1 
Jackknife2 

Parametric Method 
Gamma 
Weibull 

Exponential 
Lognormal 

 

Figure 2.  Methodology 
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Data Collection (Contrived Population)   

One of the most difficult aspects of this problem was the fact that the number of 

species residing in the soil is unknown and is almost certainly a number of large 

magnitude.  It was therefore difficult to assess how well common estimators will perform 

if there is so little known about the truth.   

 It was considered appropriate, then, to evaluate the various estimators through 

their use on well-defined populations.  That is to say, populations in which the total 

number of species were known.  Although this has been done before (Chao uses 

comparison tables in several of her papers to evaluate her estimators), the populations 

used for the evaluations are, quite likely, several orders of magnitude smaller than that of 

a constructed wetlands.  Chao used examples of taxicab driver and cottontail rabbit 

populations to assess the accuracy of her method (Chao; 1987:787).  These populations 

numbered 420 and 135 individuals respectively.  Soil-based microbial populations are 

generally thought to be orders of magnitude larger than the populations used by Chao.  

Consequently, it was imperative to create larger populations in order to evaluate the 

performance of different estimators.     

 

Population Creation  

Populations were created by programming a generic gamma probability 

distribution function into Matlab in conjunction with Matlab’s built-in Probability 

Distribution Toolbox.   
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The equation used for the gamma distribution was: 

 

                          ( ) ( )
1
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α β
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−
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                                           (7) 

 

where the equation used for incomplete gamma function was: 
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   In order to create a population of the desired magnitude, parameters were 

chosen so that with large numbers of "species" (on the order of 10,000) the density of the 

function, when multiplied by 1010 results in at least 0.5.  This was so that when rounded, 

the number of species considered contains at least one individual.   After determining the 

alpha and beta parameters for use with the gamma distribution, the parameters were then 

run through a program which created bins, with each bin containing at least one 

individual.    Individuals which were in the same species were placed in a bin.  The 

number of bins corresponded to the number of species in the population.  The total 

population size was determined by summing up the number of individuals in each bin 

across all the bins.  The following was the equation used for the summation: 

 

                                                                                     (9) ( )
0

N

i

Pop bin i
=

=∑
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A crucial step in the creation of a population was the ability to determine which 

individuals belong to which species.  That is to say, the previous steps gave a method for 

determining the number of individuals in each category, but no way to determine which 

species a particular sampled individual belongs to.  This problem was solved by 

assigning numbers to each individual (e.g., numbers 0 through 1,000 would belong to 

species A, 1,001 through 1,500 would belong to species B).  The application of a 

cumulative summation function to the bins assigned each individual to a bin and 

completed the process of creating a population. 

The programming of each step in Matlab enabled the procedure of population 

generation to be repeated any number of times, allowing the population parameters and 

size to be easily changed.  This allowed for the manufacture of several different 

populations. 

 

Sampling of Contrived Populations  

 Random samples were drawn from the population using Excel.  Excel’s 

randbetween function running from one to X (where X was the total size of the 

population) was used to sample individuals.  The randbetween function allowed for 

random integers, as opposed to decimal values, to be drawn.  It is important to note that 

this function is based upon sampling with replacement.  This introduces a problem in that 

there is a possibility that the same number can be drawn twice, an issue unique to the 

manufactured populations and one not found in natural, biological sampling of microbes 

from the soil.  Since the drawing of the same number was not acceptable for the purpose 

of this thesis, this problem was overcome by drawing a larger sample than required and 
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taking the first n unique numbers (n being the desired sample size).  Each sample was 

then imported into Matlab for categorization. 

 The Matlab code used for the procedure is included in an Appendix A to the 

document.  The total numbers of sampled individuals drawn from each species was 

counted.  The sample was then considered ready for analysis.  

 

Wetlands Data Collection 

 Data from the constructed wetlands was collected (Leon; 2008) and provided for 

use in this thesis.  The data was supplied in a form such that the methods in question 

(both the commonly used non-parametric and the proposed parametric methods) were 

able to be readily applied.  Figure 3 depicts a break-out of the wetlands data at a group 

level (species have not been yet identified). 
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Figure 3.  Wetlands Soil Data (Leon; 2008) 
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Non-Parametric Method Application 

 The following non-parametric methods were considered in this thesis: Chao1, 

ACES, Jackknife 1, and Jackknife 2.  Of note is that the two most commonly used 

methods are Chao1 and ACES.  The formulations for these four methods were 

programmed into Matlab for use in this thesis.  Chapter 2 contains the equations used for 

all the non-parametric methods considered in this thesis.  Additionally, the code included 

the equation for the variance of the Chao1 method.  The Matlab code used is included in 

Appendix B to this document.  The code was verified with the examples provided by 

Chao (Chao, 1987). Furthermore, code verification, this time on the wetlands data, was 

performed with a widely-used computer software program (DOTUR).   

 

Parametric Method Application 

 Parametric curve fitting was applied to all samples with the use of EasyFit 

software.  This allowed for evaluation of multiple distributions (both continuous and 

discrete) compared with the sample data.  The commercial software ranked each 

distribution according to the Kolmogorov Smirnov goodness of fit test.  The purpose of 

the test was to determine if the data in question comes from a specific probability 

distribution (NIST; 2008).  The null hypothesis states that the data does indeed come 

from a specific probability distribution; whereas the alternative hypothesis is that the data 

does not come from the specific probability distribution (NIST;2008).   

The test statistic for the Kolmogorov Smirnov test is defined as: 

                                      ( ) ( )1max ,
1

i
i iD F Y F
N Ni N

−⎛= − −⎜
⎝ ⎠≤ ≤

iY ⎞
⎟                                    (10) 
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 The null hypothesis is then rejected or failed to be rejected at several alpha levels 

(all calculations were performed automatically by the EasyFit software).   

In actuality, the data being studied in this problem follows a discrete, not a 

continuous distribution.  To overcome this problem, the top-ranked distributions were 

discretized.  There are a multitude of methods commonly accepted and used to 

approximate discrete distributions from continuous ones.  The method chosen for this 

particular thesis was applying Riemann sums to the distribution as programmed into 

Matlab.   

The code used for the discretizing is included in Appendix C to this thesis.  

Extrapolation was the next step.  The data was multiplied by 1010 in the case of the 

contrived populations.  For the wetlands soil data, the size of the wetlands was multiplied 

by the number of individuals thought to exist in a gram of soil to get a lower estimate for 

the number of bacteria residing in the entire wetlands.  

 

Limitations 

 The first limitation, which has been repeatedly emphasized throughout this thesis, 

is that there is not currently a solid estimate as to how many microbes are living in the 

soil.  This limitation makes the assessment of estimators on actual data difficult.  

Contrived populations will give the advantage of knowing the truth (and thus a way to 

evaluate estimators), but may not reflect the shape and size of the actual data in question. 

 Another limitation is the choice of a parametric estimator, where assumptions 

must be made about the underlying population.  Again, since so little is known about the 
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truth of microbial populations, making assumptions about the bacterial composition is an 

obvious concern.   

 A further concern regarding this limitation revolves around the fact that non-

parametric methods although invariant to population size are variant to sample size.  This 

means that the size of the underlying population, when using a non-parametric method, 

will not change the estimate.  However, the size of the sample will have an impact on the 

resultant estimate.  In the case of using parametric methods, the reverse is true.  The 

sample size should not have an effect on the use of the method, but the overall population 

size will have an effect (when extrapolated).  This implies that parametric methods are 

variant to population size but are invariant to sample size.  The non-parametric portion of 

this limitation will be addressed in Chapter 4, illustrated by an example using both a 

contrived population and the wetlands data.   

 

Summary 

 This chapter explains the methodology used to begin answering the question 

regarding species estimation.  It delves into the creation of large populations and the 

reasoning behind their use.  Both non-parametric and parametric methodologies are 

described with regard to the contrived data as well as their application to the real-world 

data.  Limitations of the overall problem as well as those of the proposed method are 

discussed as well. 

 



 

IV.  Results and Analysis 

 

Chapter Overview 

  This chapter introduces the results and analysis produced by this research.  First 

and foremost it addresses the question of the appropriateness of the use of the more 

commonly used non-parametric methods in practical application of microbial species 

population estimation.  This is accomplished by applying the methods to the fabricated 

populations described in the previous chapter.  This chapter then analyzes the results of 

using a parametric approach to both the fabricated data as well as the real-world wetlands 

data.  Each contrived population will be discussed in detail, as will the results of the 

analysis of the wetlands data. 

 

Results of Research 

 Six different sample populations were created and analyzed using both the non-

parametric as well as the parametric methods.  The size and number of species varied 

from population to population.  The underlying distributions for the contrived 

populations were all two-parameter gamma distributions.  The truth regarding the 

underlying population distribution of species for the wetlands is unknown.   

 

Population 1 

  Population 1 was created by using a gamma distribution with an alpha parameter 

value of 1 and a beta parameter value of 200.  Population densities were multiplied by 

1010 to ensure a large population size.  The resulting population contained 997,501,983 
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individuals belonging to 3,223 different species; the resultant population is smaller than 

one billion due to rounding and discretizing continuous data.  A random sample of size 

1,000 was taken and categorized as described in Chapter 3 of this document.  Table 3 

contains the pertinent population characteristics.  

  

Table 1.  Population 1 Specifications 

 

Probability 
Distributio

n 

Alpha 
Parameter 

Beta 
Parameter

Population 
Size 

Number of 
Species 

Sample 
Size 

Gamma 1 200 997,501,983 3,223 1,000 

 

 

 The sample resulted in 453 unique species, of which 227 were singleton species.  

Figure 4 depicts a graphic representation of the sample.  Due to the narrow width of each 

category and the number of unique species, the columns appear to be connected, when, in 

fact they are not. 
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Figure 4.  Sample Data Population 1 

 

 This sample is similar to the wetlands soil data set in that a majority of the sample 

is comprised of singleton and doubleton species.  Unlike the wetlands soil data, this 

particular sample resulted in a sample comprised of rare species (no sampled species 

contained more than 10 individuals). 

 The four non-parametric methods were applied to the population data.  Table 2 

contains the results of the analysis. 

 

Table 2.  Non-parametric Results for Population 1 

 Chao1 ACES Jackknife1 Jackknife2 Actual 
Species 
Estimate 

756 586 680 822 3,223 

Error 77 % 82 % 79 % 74 %  
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 Although the non-parametric estimators seem to agree reasonably with each other 

about their predictions, all greatly underestimate the actual number of species present in 

this particular population.  The standard deviation associated with the Chao1 estimator 

for this population is 54.8.   In this instance, the output of the Chao1 method is over 44 

standard deviations away from the truth.  Tchebysheff's theorem can be applied to the 

Chao1 method output.  The equation used for Tchebysheff's theorem, in regard to a point 

estimator, is: 

 

                                                ^

2

1ˆ 1nP k
k

θθ θ σ⎛ ⎞− < ≥ −⎜ ⎟
⎝ ⎠

                                          (11) 

 

where ˆ( )nE θ θ=  and ˆ
ˆ( )

n
nV

θ
σ θ= , the standard deviation of the estimator.  

Furthermore, it states that 15/16 of the data falls within four standard deviations of the 

expected value.  Applying this information to equation (11) yields: 

 

                                                    ( ) 15ˆ537 975
16

P θ< < ≥                                            (12) 

 

 Clearly, the actual number of species for this population does not fall within the 

above interval. 

 Parametrically fitting the sample data to a curve resulted in the following top-

ranked distributions fitting the curve:  1) Exponential (two-parameter), 2) Exponential 

(one-parameter), 3) Gamma (three-parameter), 4) Weibull, and 5) Weibull (three-
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parameter).   Figures 5-9 depict the fits of each distribution to the data, where the x-axis 

represents the number of unique species found in the sample. 
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Figure 5.  Exponential (two-parameter) Fit (Population 1) 
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Figure 6.  Exponential Fit (Population 1) 
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Figure 7.  Gamma (three-parameter) Fit (Population 1) 
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Figure 8.  Weibull Fit (Population 1) 
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Figure 9.  Weibull (three-parameter) Fit (Population 1) 
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The parameters and equations associated with each of the distributions can be found in 

Appendix D of this thesis.  Table 3 contains the analysis results for Parametric fitting of 

Population 1. 

 

Table 3.  Parametric Results for Population 1 

 Weibull Weibull 
(3p) 

Exponential 
(2p) 

Exponential 
 

Gamma 
(3p) 

Actual 

Species 
Estimate 2,500 2,663 2,351 2,362 2,518 3,223 

Error 22 % 17 % 27 % 27 % 22 %  
Population 

Mean 146.67 150.45 143.36 144.18 139.27  

Population 
Standard 
Deviaton 

148.43 160.23 142.36 144.18 152.95  

 

 

 All the parametric curves estimated species composition closer to the truth than 

the non-parametric estimators, with parametric percent errors ranging between 17 and 27 

percent and non-parametric percent errors ranging between 74 and 82 percent.   

The three-parameter lognormal distribution was also analyzed (although not 

formally presented with this population), since this is one of the distributions which 

(according to the literature) are thought to describe the natural microbial population.  It 

resulted in an over-estimation of the actual number of species, with a predicted value of 

9,001 unique species. 
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Non-parametric Sample Size Versus Parametric Population Size Study 

 This subsection addresses the important issue of the variant nature of non-

parametric sample sizes as well as the variant nature of parametric population sizes.   

Population 1 was used to show that the non-parametric estimators will vary with a 

chosen sample size.  This was done by choosing 15 random samples of differing sizes 

and applying the four non-parametric methods to the samples.  Table 4 summarizes the 

results of the application of the non-parametric methods to the samples. 
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Table 4.  Variability of Non-parametric Estimates Based on Sample Size 

Sample Size 
Chao1 

Estimate 
ACES 

Estimate 
Jackknife1 
Estimate 

Jackknife2 
Estimate Actual 

Error Error Error Error 

50 370 392 90 130 3,223 
89 % 88 % 97 % 96 % 

75 400 431 131 187 3,223 88 % 87 % 96 % 94 % 

100  546 445 168 240 3,223 83 % 86 % 95 % 99 % 

250 746 538 354 489 3,223 77 % 83 % 89 % 85 % 

500 601 506 503 632 3,223 81 % 84 % 84 % 80 % 

750 621 515 577 694 3,223 81 % 84 % 82 % 78 % 

1,000 756 586 680 822 3,223 77 % 82 % 79 % 74 % 

1,500 647 562 670 745 3,223 80 % 83 % 79 % 77 % 

2,500 840 688 823 933 3,223 74 % 79 % 74 % 71 % 

5,000 1,022 848 911 1,111 3,223 68 % 74 % 72 % 66 % 

10,000 1,086 961 1,092 1,187 3,223 66 % 70 % 66 % 63 % 

25,000 1,301 1,146 1,281 1,391 3,223 60 % 64 % 60 % 57 % 

50,000 1,325 1,229 1,340 1,410 3,223 59 % 62 % 58 % 56 % 

75,000 1,415 1,334 1,454 1,517 3,223 56 % 59 % 55 % 53 %  

100,000 1,539 1,419 1,550 1,641 3,223 52 % 56 % 52 % 49 % 
 

 

 As noted above, the non-parametric estimators became more accurate as the 

sample size increased.  The total population size for this study was just under a billion.  A 

sample size of 100,000 was still unable to produce an estimate less than 49 percent away 
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from the actual number of species comprising this population.  The following figure 

shows a graphically depiction of what the Chao1 method is estimating in relation to the 

sample size. 
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Figure 10.  Chao1 Estimates 

 The following figure shows a graphically depiction of what the ACES method is 

estimating in relation to the sample size. 
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Figure 11.  ACES Estimates 

 

 The graphs show both the Chao1 and the ACES methods providing improved 

estimates with an increased sample size.  Consequently, a question to consider is then, 

what sample size would be necessary to result in an accurate estimate of the number of 

species.  To address this issue, consider the following.  For this particular population, the 

true number of species is .  Of these species, 219 are species comprised of 

exactly 1 individual (

3, 223N =

1f ).  Additionally, 102 are species comprised of exactly 2 

individuals ( 2f ).  Consider that all singletons and doubletons have been identified.  

Substituting this information into the Chao1 estimator given by equation (1) produces the 

following: 

 

                           (13) ( ) (23223 219 / 2*102S= + )
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Solving for gives that 2,988 unique species would be needed in addition to all 219 

singletons and 102 doubletons to achieve the actual number of species in the population. 

S

 Given that, it may seem relatively easy to obtain a sample large enough to 

produce that number of unique species.  However, for this population, as the sample size 

increases, the proportion of unique species and the proportion of singletons per sample 

decrease.  Figures 12 and 13 depict this phenomenon graphically. 
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Figure 12.  Percentage of Unique Species per Sample 
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Figure 13.  Percentage of Singletons per Sample 

 

These graphs suggest that even as the sample size increases, the number of 

singletons and the number of unique species found are not increasing at fast enough rates 

to have a significant impact the accuracy of the non-parametric estimators.  This leads to 

a new problem of having to exhaustively enumerate the population.    

Additionally, with the methods currently available for microbial sampling, it is 

most likely impractical to have such a large sample size.  However, as techniques for 

acquiring microbial samples increases, samples of sizes such as these may attainable.  

Furthermore, it may be that even increasing the sample size may not have the desired 

effect of increasing the accuracy of the non-parametric estimators.   
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While parametric estimators will not have the same variability as seen with the 

non-parametric estimators, the usage of such methods will depend on the population size 

used for the extrapolation.  The following table summarizes the population sizes used for 

this study as well as the estimates produced. 

 

Table 5.  Parametric Estimates for Various Population Sizes 

 

population size species estimate
1.0 x 106 1,370 
1.5 x 106 1,429 
2.5 x 106 1,502 
5.0 x 106 1,602 
7.5 x 106 1,660 
1.0 x 107 1,701 
1.5 x 107 1,759 
2.5 x 107 1,833 
5.0 x 107 1,932 
7.5 x 107 1,991 
1.0 x 108 2,032 
1.5 x 108 2,090 
2.5 x 108 2,164 
5.0 x 108 2,263 
7.5 x 108 2,322 
1.0 x 109 2,363 
1.5 x 109. 2,421 
2.5 x 109 2,495 
5.0 x 109 2,594 
7.5 x 109 2,652 
1.0 x 1010 2,649 
2.5 x 1010 2,852 
5.0 x 1010 2,925 
1.0 x 1011 3,025 
5.0 x 1011 3,255 
9.0 x 1011 3,340 
1.0 x 1012 3,355 
5.0 x 1012 3,587 
9.0 x 1012 3,671 
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Figure 14 depicts the change in the estimates of a parametrically-fitted 

exponential curve, using the parameter estimate produce by this population’s sample.   
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Figure 14.  Parametric Estimates for Various Population Sizes 

 

It is interesting to note that although the population size may increase by orders of 

magnitude, the estimate for the number of species in the population does not do the same.  

If this were the case, the graph would depict a more linear function.  For this population, 

this does not appear to be the case.  This implies that although the curve may not produce 

an asymptote, the rate at which the estimates increase will become increasingly slow.   

For example, the percent increase between a population size of 5 x 1011 and 9 x 1012 is 

approximately 1,700 percent, essentially, an increase by an order of magnitude.  

However, the species estimates of 3,255 and 3,671 (respectively) show a percent increase 
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of approximately 13 percent.  Therefore, at some point, the population size will no longer 

have a drastic impact on the species estimate.     

 

Population 2 

   Population 2 was created by using a gamma probability distribution with an alpha 

parameter value of 0.01 and a beta parameter value of 1000.  This particular population 

was chosen to be smaller in size to see if perhaps a smaller population would provide 

better results for the non-parametric methods.  The resulting population contained 532 

individuals belonging to 167 different species.  A random sample of size 100 was drawn 

and categorized as described in Chapter 3 of this document.  Table 6 contains the 

pertinent population characteristics.   

 

Table 6.  Population 2 Specifications 

Probability 
Distribution 

Alpha 
Parameter 

Beta 
Parameter 

Population 
Size 

Number of 
Species 

Sample 
Size 

Gamma .01 1,000 532 167 100 

 

  

 The sample resulted in 38 unique species, of which 16 were singleton species.  

Figure 15 depicts a graphic representation of the sample. 
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Figure 15.  Sample Data Population 2 

 

The four non-parametric methods were applied to the population data.  Table 7 contains 

the results of the analysis. 

 

Table 7.  Non-parametric Results for Population 2 

 Chao1 ACES Jackknife1 Jackknife2 Actual 
Species 
Estimate 

51 47 54 60 167 

Error 69 % 72 % 68 % 64 %  
 

 

 Though the non-parametric estimators seem to reasonably agree with each other, 

it is apparent by looking at the above table that each method greatly underestimates the 

truth.  The Chao1 method, for this population, produced a standard deviation of 8.37.   In 
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this particular instance, the output of the Chao1 method is over 13 standard deviations 

away from the truth.  Tchebysheff's theorem can be applied to the Chao1 method estimate 

for population 2.  Applying the information from population 2 to equation (11) yields: 

 

                                                     ( ) 15ˆ18 84
16

P θ< < ≥                                       (14) 

 

Clearly, the actual number of species for this population does not fall within the above 

interval. 

 Parametrically fitting the sample data to a curve resulted in the following top-

ranked distributions fitting the curve:  1) Exponential, 2) Lognormal, 3) Weibull, 4) 

Gamma (three-parameter), and 5) Gamma.   Figures 16-20 depict the fitting of the 

distributions to the data, where the x-axis represents the number of unique species found 

in the sample. 
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Figure 16.  Exponential Fit (Population 2) 
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Figure 17.  Lognormal Fit (Population 2) 
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Figure 18.  Weibull Fit (Population 2) 
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Figure 19.  Gamma (three-parameter) Fit (Population 2) 
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Figure 20.  Gamma Fit (Population 2) 

 

The parameters and equations associated with each of the distributions can be found in  

Appendix D of this thesis.  Table 8 contains the analysis results for Parametric fitting of 

Population 2. 

 

Table 8.  Parametric Results for Population 2 

 
Exponential Lognormal Weibull Gamma 

(3p) 
 

Gamma Actual 

Species 
Estimate 51 59 56 54 48 167 

Error 69 % 65 % 66 % 68 % 71 %  
Population 

Mean 11.188 10.46 10.428 6.3227 11.088  

Sample 
Standard 
Deviation 

11.188 14.644 11.113 9.1057 14.644  

 

48 



 

 As noted above, all the parametric curves estimated species composition in the 

same range as the non-parametric methods, with raw estimates for the non-parametric 

methods ranging between 51 and 60.  Raw estimates for the parametric methods resulted 

in a range between 48 and 59.   

For this small population, the use of the parametric methods proved no closer to 

the truth than the non-parametric methods.  That is to say, both categories of methods 

performed poorly, with a non-parametric percent error average and a parametric percent 

error average of 68 percent. 

 

Population 3 

Population 3 was created from a gamma distribution with an alpha parameter 

value of 0.001 and a beta parameter value of 500.  This particular population was chosen 

to be smaller in size than population 1, but larger in size than population 2.  The resulting 

population contained 6,197,020 individuals belonging to 3,218 different species.  A 

random sample of size 2,841 was drawn (to reflect a sample size similar to that drawn 

from the wetlands soil) and categorized as described in Chapter 3 of this document.  

Table 9 contains the pertinent population characteristics.  

  

Table 9.  Population 3 Specifications 

Probability 
Distributio

n 

Alpha 
Parameter 

Beta 
Parameter 

Population 
Size 

Number of 
Species 

Sample 
Size 

Gamma .001 500 6,197,020 3,218 2,841 
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 The sample resulted in 404 unique species, of which 182 were singleton species.  

Figure 21 depicts a graphic representation of the sample. 
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Figure 21.  Sample Data Population 3 

 

The four non-parametric methods were applied to the population data.  Table 10 contains 

the results of the analysis. 

 

Table 10.  Non-parametric Results for Population 3 

 Chao1 ACES Jackknife1 Jackknife2 Actual 
Species 
Estimate 

641 499 586 698 3,218 

Error 80 % 84 % 82 % 78 %  
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 The non-parametric estimators seem to reasonably agree with each other, it is 

apparent by looking at the above table that each method greatly underestimates the truth.  

For this population, the Chao1 method produced a standard deviation of 47.6.   In this 

particular instance, the output of the Chao1 method is over 54 standard deviations away 

from the truth.  Tchebysheff's theorem can be applied to the Chao1 method estimate for 

population 3.  Applying the information from population 2 to equation (11) yields: 

 

                                                    ( ) 15ˆ451 831
16

P θ< < ≥                                            (15) 

 

Clearly, the actual number of species for this population does not fall within the above 

interval. 

 Parametrically fitting the sample data to a curve resulted in the following top-

ranked distributions fitting the curve:  1) Gamma (three-parameter), 2) Lognormal, 3) 

Weibull (three-parameter), 4) Weibull, and 5) Gamma.   Figures 22-26 depict the fitting 

of the distributions to the sample data, where the x-axis represents the number of unique 

species found in the sample. 
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Figure 22.  Gamma (three-parameter) Fit (Population 3) 
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Figure 23.  Lognormal Fit (Population 3) 
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Figure 24.  Weibull (three-parameter) Fit (Population 3) 
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Figure 25.  Weibull Fit (Population 3) 
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Figure 26.  Gamma Fit (Population 3) 

 

The parameters and equations associated with each of the distributions can be found in 

Appendix D of this thesis.  Table 11 contains the analysis results for parametric fitting of 

Population 3. 

 

Table 11.  Parametric Results for Population 3 

 Gamma 
(3p) 

 

Lognormal Weibull 
(3p) 

Weibull  
 

Gamma Actual 

Species 
Estimate 952 6,893 6,976 2,358 1,272 3,218 

Error 70 % 114 % 117 % 27 % 60 %  

Population 
Mean 39.843 72.345 56.569 61.651 60.486  

Sample 
Standard 
Deviation 

51.854 268.49 130.04 112.84 88.824  
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 It is interesting to note that for this particular population, there were two 

parametric distributions which overestimated the number of species comprising the 

population.  Of the three which did not provide an overestimation, the outputs of all three 

were closer to the truth than any of the non-parametric methods used.   

It appears that for this particular population, the use of the parametric methods 

proved closer to the truth than the non-parametric methods.   

 

Population 4 

Population 4 was created by using an alpha parameter value of 0.001 and a beta 

parameter value of 5,000.  The resulting population contained 849,450 individuals 

belonging to 13,484 different species.  This was chosen to be a more diverse population 

than population 3.  A random sample of size 2,840 was drawn (to reflect a sample size 

similar to that drawn from the wetlands soil) and categorized as described in Chapter 3 of 

this document.  Table 12 contains the pertinent population characteristics.   

 

Table 12.  Population 4 Specifications 

Probability 
Distributio

n 

Alpha 
Parameter 

Beta 
Parameter 

Population 
Size 

Number of 
Species 

Sample 
Size 

Gamma .001 5,000 849,450 13,484 2,840 

 

 

 The sample resulted in 929 unique species, of which 639 were singleton species.  

Figure 27 depicts a graphic representation of the sample. 
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Figure 27.  Sample Data Population 4 

 

The four non-parametric methods were applied to the population data.  Table 13 

contains the results of the analysis. 

 

Table 13.  Non-parametric Results for Population 4 

 Chao1 ACES Jackknife1 Jackknife2 Actual 
Species 
Estimate 2,464 1,611 1,568 2,073 13,484 

Error 82 % 88 % 88 % 85 %  
  

 

 Although the non-parametric estimators seem to agree reasonably with each other 

about their predictions, it is apparent by looking at the above table that all the methods 

are a great deal smaller than the truth.  The Chao1 method has an associated equation for 

56 



 

a variance, with a resultant standard deviation of 184.4.   In this particular instance, the 

output of the Chao1 method is over 59 standard deviations away from the truth.  

Tchebysheff's theorem can be applied to the Chao1 method estimate for population 4.  

Applying the information from population 4 to equation (11) yields: 

 

                                                 ( ) 15ˆ1,728 3,200
16

P θ< < ≥                           (16) 

 

Clearly, the actual number of species for this population does not fall within the above 

interval. 

Parametrically fitting the sample data to a curve resulted in the following top-

ranked distributions fitting the curve:  1) Gamma (three-parameter), 2) Lognormal, 3) 

Weibull, 4) Weibull (three-parameter) and, 5) Gamma.   Figures 28-32 depict the fitting 

of the distributions to the sample data, where the x-axis represents the number of unique 

species found in the sample. 
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Figure 28.  Gamma (three-parameter) Fit (Population 4) 

 

Probability Density Function

Histogram Lognormal

x
9008007006005004003002001000

f(x
)

0.13
0.12
0.11

0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

0

 

Figure 29.  Lognormal Fit (Population 4) 
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Figure 30.  Weibull Fit (Population 4) 
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Figure 31.  Weibull (three-parameter) Fit (Population 4) 
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Figure 32.  Gamma Fit (Population 4) 

 

The parameters and equations associated with each of the distributions can be 

found in Appendix D of this thesis.  Table 14 contains the results for the parametric 

fitting of Population 4. 

 

Table 14.  Parametric Results for Population 4 

 Gamma 
(3p) 

 

Lognormal Weibull 
 

Weibull  
(3p) 

Gamma Actual 

Species 
Estimate 3,427 10,674 5,267 6,085 2,526 13,484 

 Error 75 % 21 % 61 % 55 % 81 %  
Population 

Mean 190.45 366.68 201.92 190 186.96  

Sample 
Standard 
Deviation 

276.93 2524.0 317.98 353.2 257.14  
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It is interesting to note with this population that the results produced by the fitting 

of the gamma distributions to the data closely resemble the results produced by the 

Chao1 method.  Meanwhile, the Weibull and lognormal populations provided estimates 

closer to the truth, with the lognormal estimate producing a result approximately one 

standard deviation from the true parameter. 

 

Wetlands Data 

The final set of data which was analyzed was the sample data collected by Capt 

Elisabeth Leon from the constructed wetlands mesocosm.  The mesocosms are columns 

of plants and soil which are representative of the constructed wetlands as a whole 

(Bishop; 2006:2).  Therefore, any extrapolation was done with respect to the entire 

wetlands.  The size of the wetlands is 120 feet by 60 feet by 4.5 feet.  Converting these 

dimensions to centimeters and multiplying times the porosity of the soil leads to 

approximately 1.2 x 109 grams of soil in the wetlands.  As discussed in Chapter 2, there 

are between 3 x 106 and  

5 x 109 bacteria living in a gram of soil (Martin and Foch, 1977).  This leads to a 

population size estimation of between 3.58 x 1015 and 5.97 x 1018 bacteria in the 

constructed wetlands.   Figure 33 depicts the sample taken from the wetlands soil. 
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Figure 33.  Wetlands Soil Sample 

 

 The sample size was comprised of 1,841 unique sequences.  There were 1,474 

singleton sequences and 211 doubleton sequences.  It is interesting to note there was one 

species from which individuals were captured 107 times.  The next largest group of 

species contained 35 sequences.  The four non-parametric methods were applied to the 

population data.  Table 15 contains the results of the analysis. 

 

Table 15.  Non-parametric Results for Wetlands Data 

 Chao1 ACES Jackknife1 Jackknife2 Actual 
Species 
Estimate 6,990 4,399 3,315 4,577 Unknown 
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 The standard deviation associated with the Chao1 method for this particular data 

set was 450.2.  Since the truth is unknown, it is impossible to accurately assess how 

many (if any) standard deviations the Chao1 method is away from the truth.  However, 

Tchebysheff's theorem can be applied to the Chao1 method estimate for the wetlands soil 

sample.  Applying the information from this population to equation (11) yields: 

 

                                                ( ) 15ˆ5,190 8,790
16

P θ< < ≥                                 (17) 

 

Then, according to this interval, the estimate for the actual number of species, would be, 

with a probability of 94 percent, between 5,190 and 8,790, though in no other population 

tested did the actual number of species fall into this respective interval. 

 Parametric fitting of the data resulted in the following top-ranked distribution fits:  

Gamma (three-parameter), Weibull, Exponential, Lognormal (three-parameter), and 

Exponential (two-parameter).  Figures 34-38 depict the fitted distributions against the 

sample data, where the x-axis represents the number of unique species found in the 

sample. 
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Figure 34.  Gamma (three-parameter) Fit 
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Figure 35.  Weibull Fit 
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Figure 36.  Exponential Fit 
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Figure 37.  Lognormal (three-parameter) 
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Figure 38.  Exponential (two-parameter) 

 

The parameters and equations associated with each of the distributions can be 

found in Appendix D of this thesis.  Table 16 contains the analysis results for parametric 

fitting of the wetlands soil data. 

 

Table 16.  Parametric Results for Wetlands Soil Data 

 Gamma 
(3p) 

 

Weibull Exponential Exponential 
(2p) 

Lower 
Confidence 

Interval 
Species 
Estimate 

34,653 67,497 19,069 19,070 

Upper 
Confidence 

Interval 
Species estimate 

43,814 93,539 23,719 23,720 
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The species estimate for the lognormal curve is not included in the table above.  

The estimation for the number of species produced using a lognormal fit was producing a 

species estimate well over 900,000 for the lower confidence interval.  This is an order of 

magnitude larger than the rest of the parametric estimates.  As such, it may be that the 

lognormal is resulting in a overestimation of the number of species in this population. 

The truth surrounding the true number of species in the soil is unknown.  

However, it is interesting to note the magnitude of differences between the non-

parametric and parametric method applications to this data set.  Table 17 compares both 

categories of methodology. 

 

Table 17.  Non-Parametric  and Parametric Results for Wetlands Soil Data 

Non-Parametric Methods 

 Chao1 ACES Jackknife1 Jackknife2 Actual 
Species 
Estimate 

6,990 4,399 3,315 4,577 Unknown 

Parametric Methods 

 Gamma 
(3p) 

 

Weibull Exponential Exponential 
(2p) 

Actual 

Lower 
Confidence 

Interval 
Species 
Estimate 

34,653 67,497 19,069 19,070 Unknown 

Upper 
Confidence 

Interval 
Species 
estimate 

43,814 93,539 23,719 23,720 Unknown 
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The sample size obtained was significant in size.  It is large enough to give a good 

indication of what the underlying distribution could look like.  As such, the results from 

the parametric fitting of the data should be considered as a better alternative to the non-

parametric methods. 

 

Wetlands Sub-Study 

 This subsection further addresses the issue of the variant nature of non-parametric 

sample sizes as well as the variant nature of parametric population sizes.  The intention of 

this sub-study is to further emphasize the results previously obtained from the sub-study 

conducted on Population 1. 

 Unlike the previous sub-study, real-world data was utilized for this sub-study.  

Random samples, ranging in size from 200 to 2,820 points were drawn from the wetlands 

soil sample provided by Leon.  Table 18 lists the results of applying the Chao1 and 

ACES non-parametric methods to the various sample sizes. 

 

Table 18.  Chao1 and ACES Non-Parametric Results for Various Sample Sizes 

Sample Size Chao1 ACES 
200 2,223 1,020 
500 3,445 1,960 
750 2,958 1,871 

1,000 3,412 2,364 
1,500 4,959 3,072 
2,000 5,770 3,563 
2,820 6,990 4,399 

 

 Figure 39 depicts the results graphically, using a linear scale for the x-axis.  

Figure 40 depicts the same results using a log scale for the x-axis. 
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Figure 39.  Chao1 and ACES Estimates for Various Sample Sizes  

(Linear Scale) 
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Figure 40.  Chao1 and ACES Estimates for Various Sample Sizes  

(Log Scale) 

 

 Neither graph shows the data tending towards as an asymptote, as was the case 

with the results seen for the sub-study for Population 1.  This may be indicative that the 

sample sizes are nowhere near large enough for the slowing of the species estimate that 

was observed earlier in this chapter.  Using the information from Figure 39, 

approximations for the minimum sample sizes needed to obtain species estimates in the 

same range as the parametric estimators can be obtained.  Table 19 summarizes the 

results. 
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Table 19.  Minimum Sample Sizes Required to Equate Non-parametric and 

Parametric Estimation Methods 

Parametric  
Method 

Parametric  
Estimate Range 

Chao1  
Sample Size 

ACES 
Sample Size 

Gamma (3p) 
 

34,653 - 43,814 17,770-22,830 27,140-34,530 

Weibull 
 

67,497-93,539 35,740-49,940 53,660-74,690 

Exponential 
 

19,069-23,719 9,340-11,870 14,550-18,310 

 

 

 It is imperative to convey that the information provided in Table 19 are estimates 

based on taking sub-samples of the wetlands soil sample data.  A non-trivial assumption 

regarding the estimates is that the composition of the sample remains relatively constant, 

which may not be a valid assumption.  Figure 40 indicates that on a log scale, the 

estimates are not linear in relation to the sample size.  This may further indicate that the 

composition of the sample does not remain the same as the sample size increase.  The 

estimates in Table 19 are provided for informational purposes only.   

 While the non-parametric estimators once again varied with the sample size of the 

population, the parametric estimators, although invariant to sample size, will vary with 

the population size.  With a great deal of uncertainty surrounding the population size of 

the wetlands, observation of changes in the species estimation as the population size 

varies becomes important.  As such, population sizes ranging between  1 x 1015 and  

5 x 1021 were applied to the gamma (3p), Weibull, and exponential fits.  Table 20 

summarizes the results. 
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Table 20.  Various Population Sizes for Parametric Fits 

Population Size Gamma (3p) Weibull Exponential 
1.0 x 1015 32,965 63,450 18,216 
3.58 x 1015 34,553 67,497 19,069 
5.0 x 1015 34,969 68,751 19,234 
1.0 x 1016 35,833 71,073 19,673 
5.0 x 1016 37,840 76,554 20,692 
1.0 x 1017 38,705 78,951 21,130 
5.0 x 1017 40,715 84,604 22,149 
1.0 x 1018 41,580 87,074 22,588 
5.0 x 1018 43,592 92,891 23,606 
5.97 x 1018 43,814 93,539 23,719 
1.0 x 1019 44,459 95,431 24,045 
5.0 x 1019 46,472 101,407 25,064 
1.0 x 1020 47,339 104,014 25,502 
5.0 x 1020 49,354 110,143 26,521 
1.0 x 1021 50,222 112,841 26,960 
5.0 x 1021 52,238 119,090 27,978 

 

 

 Figures 41 and 42 depict the information graphically, using a linear and log scale 

respectively for the x-axis. 
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Figure 41.  Parametric Estimates for Various Wetlands Population Sizes 

(Linear Scale) 
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Figure 42.  Parametric Estimates for Various Wetlands Population Sizes 

(Log Scale) 

 Fitting of three parametric curves to population sizes ranging from 1 x 1015 to  

5 x 1021.  From Figure 41 it appears that each of the curves becomes asymptotic and, for 

any local area, that is the case.  However, Figure 42 shows the same graph replacing the 

linear scale with a log scale; it is apparent that the curves do not truly become 

asymptotic.  Still, although non-trivial assumptions must be made regarding the 

underlying population of the wetlands soil, in order to obtain similar results using the 

non-parametric methods, sample sizes much larger than the 2,820 provided for this 

research must be obtained.  Therefore, the use of parametric methods for estimation 

should be considered as a better alternative to the non-parametric methods.  
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Research Questions Answered 

 The research question as taken from Chapter 1 is: Are the non-parametric 

methods currently used for species estimation, in fact, appropriate for use on microbial 

wetlands soil population estimation or does a better alternative exist? 

This first part of this question was answered in the process of this research.  In 

fact, the commonly used methods do not appear to be appropriate for application to this 

type of problem.  This research also began to answer the second part of the research 

question.  The use of parametric-curve fitting methodologies appears to hold more 

promise in attempting to accurately estimate the number of species comprising a large 

population.    

  

 

 

Summary 

 This chapter delves into the analysis and results of the different data sets used in 

this thesis.  An in-depth look at several contrived populations analyzed both non-

parametrically and parametrically is offered.  This is followed by the application of the 

methodologies to a real-world data set.  This chapter concludes by presenting an answer 

for the first part of the research question, the commonly used non-parametric methods 

may not always be appropriate to use as estimators in this type of problem.   



 

V. Conclusions and Recommendations 

 

Chapter Overview 

 The purpose of this chapter is to provide the conclusions and recommendations 

brought about by this research.  The overarching question to be answered concerns the 

appropriateness of applying non-parametric methods to large microbial populations for 

the purpose of species estimation.  Furthermore, this thesis begins the process of 

identifying alternative methods to non-parametric estimation with regard to population 

composition.  Conclusions of this research will be followed by its significance.  This 

chapter will close with considerations for future research. 

 

Conclusions of Research 

 Prior to the onset of this research, the question was posed as to whether the 

methods currently being used for species estimation were underestimating the true 

number of species in a very diverse population.  The populations in question are very 

large, with the current thought suggesting at least 3,000,000 bacteria living in one gram 

of soil (Martin and Foch; 1977).  To complicate the problem further, the samples which 

are acquired often are sparse (comprised of mostly singleton sequences).  There is 

currently so little known about the truth that this is an extremely difficult problem.  This 

research attempted to overcome the difficulty by creating several populations in which 

the truth regarding the number of species was known and applying the commonly used 

methods to samples from those populations.  The results from those particular 

populations showed that the non-parametric estimators consistently failed to obtain the 
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true number of species.  In every instance, the Chao1 method, the only non-parametric 

method for which the variance can easily be found, produced results which were many 

standard deviations from the truth.  Therefore, caution should be exercised when 

applying this method as an estimator.  Chao stated in her introduction to this method that 

it provides a lower bound for the number of species in the population, but shows promise 

as use for an estimator (Chao; 1987).  This research questions the use of the lower bound 

as an estimator for the number of species.  It is important to note that the results which 

are produced by continued use of the Chao1 method are producing lower bounds, not 

estimates.  Further, these lower bounds are dependent on the sample size drawn from the 

population in question, as shown in Chapter 4 of this thesis.  Additionally, even with an 

increase in sample size, Figures 10 and 11 show that the species estimate will either 

become essentially asymptotic.  This is indicative that when a certain sample size is 

attained, a further increase in sample size will not result in a drastic improvement of a 

species estimate obtained by using the non-parametric methods discussed in this thesis.  

 In most instances, parametric fitting of curves to the data produced results which 

were closer to the truth.  Although there are assumptions which must be made about the 

underlying population when using a parametric estimator, the results of parametric 

estimation show more promise than the use of non-parametric methods which only 

produce lower bounds.  They consistently produced a lower percent error with regard to 

the actual number of species found in a contrived population than the non-parametric 

methods.  However, the assumptions made with the use of a parametric method are not 

trivial assumptions.  The two major assumptions that must be made are that of 

distribution type and that the population size is known.  However, Chapter 4 of this thesis 
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demonstrated that population size will become a minimal assumption as the population 

size increases.  Figure 14 showed that as the population size increased by orders of 

magnitude, the species estimate became virtually asymptotic.  Since the estimated 

population size of the wetlands data is between 3.58 x 1015 and 5.97 x 1018 it may be that 

the more important assumption to focus on would be that of underlying distribution type.  

This hypothesis is further strengthened by noticing that although the population size 

increased by three orders of magnitude, there was only, on average, a 22 percent increase 

between the lower and upper confidence intervals for the parametric species estimates.    

 

Significance of Research    

 This research provides a significant result for the biologists seeking to answer 

questions regarding species composition.  The current thought is that the non-parametric 

estimators underestimate the number of species in a population.  In reality, the non-

parametric methods should not be used as estimators, but rather as lower bounds.  

Researchers wishing to continue using such methods should note that these methods are 

not acceptable for use as estimators and caution should be used when reporting results 

obtained from these methods. 

 Furthermore, this research indicated that even with an order of magnitude 

increase in sample size, the non-parametric species estimate did not experience the same 

increase.  Essentially, there exists a sample size such that the estimated number of species 

in the microbial population will become essentially asymptotic.  As such, a further 

increase in the sample size will not result in a much improved non-parametric species 

estimate. 
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 Questions surrounding species composition continue to ply the scientific world.  

The area of species estimation continues to be prominent in scientific papers and journal 

articles.  New methods for estimation are regularly being evaluated for use.  It appears 

from this research that parametric methods hold more promise as estimators than do non-

parametric methods.   

 

Recommendations for Further Research 

 While this research answered the question surrounding the appropriateness of 

using the most common non-parametric methods, there are still questions which need to 

be addressed. 

 More research needs to be done into the area of parametric fitting of the data sets.  

Time should be devoted to further refining thoughts regarding the underlying 

distributions that nature follows.  It may be that there is currently not a distribution which 

accurately describes the microbial population.  In other words, perhaps the population 

distribution is unlike any which are currently being used (or considered for use) to 

describe the microbial world. 

 Additionally, it may be that no single distribution explains the microbial world 

and combinations of known distributions (mixed distributions) would be most 

appropriate to describing such populations.  Attempting to mix different distributions 

may produce unexpected and/or unusual results.   

 Another interesting research area is investigating the possibility of making the 

parametric methods more invariant to population assumptions.  Advancements in this 
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area would further strengthen the argument for using parametric methods over non-

parametric methods. 

 A more in-depth study of the sample size and number of unique species and 

singletons in a given sample also merits further consideration.  

 

Summary 

 Included in this chapter were conclusions and recommendations.  The answer to 

the first part of the research question was presented.  Progress was made toward 

answering the second.  This research demonstrates that non-parametric methods should 

be considered as lower bounds (as originally intended) for population composition, not as 

estimators.  Further, this research showed that parametrically fitting well-known 

probability distributions to the data sets provided answers which were closer to the truth.  

This chapter also offers suggestions for future research.  

  



 

Appendix A:  Matlab Code for Creation and Categorization of Contrived Populations 

 
%% First define what you want the gamma function to be.  The parameters are 
called A (alpha) and B(beta).  These parameters can be determined using 
the disttool and adjusting the parameters.  For my first attempt I will 
use A=0.8989 and B=1.095 (distribution can be seen using disttool). 
loop through the following function.  I used each i as the nmber species (e.g. i=1 
is the first species, i=2 the second, etc.) 
format long  
intmax('uint64') 
clear C 
clear D 
A = input ('enter the value for the alpha parameter') 
B = input ('enter the value for the beta parameter') 
% The gamma function is a built in Matlab function. 
Y=gamma(A) 
X=((1/(Y*(B^A)))) 
X=X*10^9 
%remember to change the ending index number to correspond to a small enough 
density 
for i=1:13484 
     
    C(i)=(1/(Y*(B^A))*(i^(A-1))*exp(-i/B)); 
end 
C=C'; 
%this gives the basic categories for the population (how many species in 
population) 
C=C*10^9 
%the following gets the total population size 
P=sum (C); 
P=roundn(P,0) 
%This is how to get number of species in each category 
D=cumsum(C); 
D=roundn(D,0); 
  
%% 
%this will sort the random sample into the corresponding species.  Remember 
%to change the index to reflect the size of the random sample 
for i=1:2840 
    S(i)=sum(D<=W(i)); 
end 
S=S' 
sort(S)
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Appendix B:  Matlab Code for Non-Parametric Estimators  
 
%%Chao estimator 
% S is equal to the number of distinct species caught in the sample. 
S = input ('enter the distinct number of species caught in sample') 
%f1 is equal to the number of singletons found in the sample 
f1 = input ('enter the number of singleton species found in sample') 
%f2 is equal to the number of doubletons found in the sample 
f2 = input ('enter the number of doubleton species found in the sample') 
%Nchao is the estimation for the number of species based upon the above inputs 
Nchao=S+(f1^2)/(2*f2) 
%%estimation of the variance 
Vchao=f2*[.25*((f1/f2)^4)+((f1/f2)^3)+.5*((f1/f2)^2)] 
%% Aces estimator 
% S is equal to Srare + Sabund 
%Srare is the number of species with less than 10 members 
Srare = input ('enter the number of species containing less than 10 members') 
%Sabund is the number of species with greater than 10 members 
Sabund = input ('enter the number of species containing more than 10 members') 
n1 = input ('enter the number of species containing one individual') 
n1 = 1*n1 
n2 = input ('enter the number of species containing two individuals') 
n2 = 2*n2 
n3 = input ('enter the number of species containing three individuals') 
n3 = 3*n3 
n4 = input ('enter the number of species containing four individuals') 
n4 = 4*n4 
n5 = input ('enter the number of species containing five individuals') 
n5 = 5*n5 
n6 = input ('enter the number of species containing six individuals') 
n6 = 6*n6 
n7 = input ('enter the number of species containing seven individuals') 
n7 = 7*n7 
n8 = input ('enter the number of species containing eight individuals') 
n8 = 8*n8 
n9 = input ('enter the number of species containing nine individuals') 
n9 = 9*n9 
n10 = input ('enter the number of species containing ten individuals') 
n10 = 10*n10 
% Nrare is the total number of individuals within rare species. 
Nrare = n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8 + n9 + n10 
%Ch is the abundance coverage estimator (ACE) 
Ch= 1-(f1/Nrare) 
% gamma is the coefficient of variation used in the calculation 
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gammace = (Srare/Ch)*((((1-0)*n1)+((2-1)*n2)+((3-1)*n3+((4-1)*n4)+((5-1)*n5)+((6-
1)*n6)+((7-1)*n7)+((8-1)*n8)+((9-1)*n9)+((10-1)*n10))/(Nrare*Nrare-1))-1) 
if (gammace > 0) gammace = 0  
end 
Saces = Sabund + (Srare/Ch) + ((f1/Ch)*(gammace^2)) 
%%Jacknife estimator (Sjack1 is the first-order, focusing on singeltons in sample and 
Sjack2 is the secong order, focusing on singletons and doubletons) 
M = input ('enter the total sample size') 
Sjack1 = S + (f1*((M-1)/M)) 
Sjack2 = S +(((f1*(2*M-3))/M)-((f2*(M-2)^2)/(M*(M-1)))) 
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Appendix C:  Matlab Code for Parametric Methods and Discretizing of Distributions 
 
%%gamma 3-parameter 
  
Alpha=input('enter value for alpha') 
Beta=input ('enter value for beta') 
Gamma=input ('enter value for gamma') 
G=gamma(Alpha) 
%pdf = (((x-Gamma)^(alpha-1))/((Beta^alpha)*G))*exp(-(x-Gamma)/Beta) 
for i =1:50000 
    H(i)=(((i-Gamma)^(Alpha-1))/((Beta^Alpha)*G))*exp(-(i-Gamma)/Beta); 
end 
H=H' 
Hex=H*3850000000000000 
Hex=Hex' 
%% 
%%discretize 
  
a=1; 
b=input('enter the endpoint for the summation') 
n=input('enter the number of desired subintervals, should be equal to the number of 
unqiue species found in sample') 
h=(b-a)/n; 
for i=1:b 
    Hd(i)=((((a+i*h)-Gamma)^(Alpha-1))/((Beta^Alpha)*G))*exp(-((a+i*h)-
Gamma)/Beta); 
end 
Hd=Hd' 
%% 
a=1; 
b=input('enter the endpoint for the summation') 
n=input('enter the number of desired subintervals, should be equal to the number of 
unqiue species found in sample') 
h=(b-a)/n; 
for i=1:b 
    zd=((a+i*h)-Zt)/Lm 
    Jd(i)=(Dt/((Lm*sqrt(2*pi)*z*(1-z))))*exp(-.5*(Gm+Dt*log(z/(1-z)))^2); 
end 
   Jd=Jd'  
  
%% 
%Lognormal  
%sigma is a continuous parameter, greater than zero 
%mu is a continuous parameter 
%gamma is a continuous location parameter (is zero for two-parameter 
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%lognormal) 
  
Sig=input('enter value for sigma parameter') 
Mu=input('enter vaule for mu parameter') 
Ga=input ('enter value for for lognormal gamma parameter, put zero if two parameter') 
for i=1:250000 
     
    K(i)=(exp(-.5*((log(i-Ga)-Mu)/Sig)^2))/((i-Ga)*Sig*sqrt(2*pi)); 
end 
K=K' 
Kex=K*3850000000000000 
Kex=Kex' 
%% 
%%discretize 
a=0; 
b=input('enter the endpoint for the summation') 
n=input('enter the number of desired subintervals, should be equal to the number of 
unqiue species found in sample') 
h=(b-a)/n; 
%% 
%%discretize 
for i=1:b 
     Kd(i)=(exp(-.5*((log((a+i*h)-Ga)-Mu)/Sig)^2))/(((a+i*h)-Ga)*Sig*sqrt(2*pi)); 
end 
Kd=Kd' 
RSlognormal=h*sum(Kd) 
%%  Weibull 
% alpha is a continuous shape parameter, greater than 0 
% beta is a continuous shape parameter, greater than 0 
% gamma is a continuous location parameter, equal to 0 for the two 
% parameter distribution 
alpha=input('enter the value for the Weibull alpha parameter') 
beta=input('enter the value for the Weibull beta parameter') 
gamma=input('enter the value for the Weibull gamma parameter, enter 0 if two parameter 
distribution') 
for i=1:70000 
    L(i)=(alpha/beta)*(((i-gamma)/beta)^(alpha-1))*exp(-((i-gamma)/beta)^alpha); 
end 
L=L' 
Lex=L*3850000000000000; 
Lex=Lex' 
  
 
%% Exponential 
%lambda is the continuous inverse scale parameter, greater than 0 
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%gamma is the continuous location paramter, equal to zero for the one 
%parameter distribution 
lambda=input('enter the value for the exponential lambda parameter') 
gammaE=input('enter the value for the exponential lambda parameter, enter 0 if one 
parameter distribution') 
for i=1:50000 
    M(i)=lambda*exp(-lambda*(i-gammaE)); 
end 
M=M' 
Mex=M*3850000000000000; 
Mex=Mex' 
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Appendix D:  Probability Distribution Functions and Parameter Estimates 

 

Exponential 

( ) ( )( )xf x e λ γλ − −=  

where 0λ > and λ is a continuous inverse scale parameter and γ  is a continuous location 

parameter ( 0γ ≡ for the one-parameter probability distribution function). 

 

Gamma 

( ) ( )
( )

( )( )
1

/xx
f x e

α
γ β

α

γ
β α

−
− −−

=
Γ

 

where 0α > and α is a continuous shape parameter, 0β > and β  is a continuous scale 

parameter, and γ  is a continuous location parameter ( 0γ ≡ for the two-parameter 

probability distribution function). 

 

Lognormal 
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where μ is a continuous parameter, 0σ > and σ is a continuous parameter, and γ is a 

continuous location parameter ( 0γ ≡ for the two-parameter probability distribution 

function). 

Weibull 
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where 0α > and α is a continuous shape parameter, 0β > and β  is a continuous scale 

parameter, and γ  is a continuous location parameter ( 0γ ≡ for the two-parameter 

probability distribution function). 

 

Parameter Estimates for Population 1 

Rank Distribution Parameters 

4 Exponential λ=0.00696 

3 Exponential (2P) λ=0.007  γ=1.0 

5 Gamma (3P) α=0.89871  β=157.27  γ=1 

1 Weibull α=0.98183  β=145.09 

2 Weibull (3P) α=0.95576  β=143.84  γ=1 

 

Parameter Estimates for Population 2 

Rank Distribution Parameters

1 Exponential λ=0.08905 

5 Gamma α=1.1488  β=9.7753 

4 Gamma (3P) α=0.47391  β=18.577  γ=1.0 

2 Lognormal σ=1.1922  μ=1.8407 

3 Weibull α=0.82309  β=10.055 
 

Parameter Estimates for Population 3 
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Rank Distribution Parameters

5 Gamma α=0.37297  β=139.27 

1 Gamma (3P) α=0.34649  β=102.34  γ=1.0 

2 Lognormal σ=1.8171  μ=2.5552 

4 Weibull α=0.53471  β=30.253 

3 Weibull (3P) α=0.38564  β=25.605  γ=1.0 

 

Parameter Estimates for Population 4 

Rank Distribution Parameters

5 Gamma α=0.48268  β=369.89 

1 Gamma (3P) α=0.2928  β=613.04  γ=1.0 

2 Lognormal σ=2.2231  μ=3.5195 

3 Weibull α=0.50054  β=106.87 

4 Weibull (3P) α=0.3775  β=42.132  γ=1.0 

 

Parameter Estimates for Wetlands Soil Data 

Rank Distribution Parameters 

3 Exponential λ=0.00158 

5 Exponential (2P) λ=0.00158  γ=1.0 

1 Gamma (3P) α=0.5236  β=1267.5  γ=1.0 

4 Lognormal (3P) σ=1.6338  μ=5.6328  γ=-6.8803 

2 Weibull α=0.70809  β=599.87 
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